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DYNAMICS OF BIOMASS STOCKS IN AREAS OF SECONDARY 

FOREST LOCATED IN WESTERN AMAZON BETWEEN 2016 AND 2020 

 

SUMMARY 

Secondary forests are portions of forest areas that were previously 

deforested. In general, secondary forests are characterized by fast-growing 

species, an alternative for reducing net carbon emissions and mitigating climate 

change; However, these forest environments are still poorly studied. In this 

context, this work aimed to adjust predictive models of biomass concerning the 

height and diameter of trees, analyzing temporally and quantitatively the biomass 

stocks in areas of secondary vegetation located in Rondônia, Western Amazon, 

aiming at quantification of aerial biomass in these ecosystems and discuss the 

implication of abundance of individuals in the estimates. To adjust the allometric 

equations it was necessary to measure all trees with a circumference at breast 

height above 15 cm in plots with 200m². After the measurements, a plot tree 

representing the average diametric variable was selected and slaughtered to 

calculate its biomass. The adjusted equations presented adjusted r² ranging from 

0.49 to 0.57, root means square error (RMSE) from 247 to 296 kg, and residual 

standard error (Syx) from 49 to 53 kg. In 2016, the plots had an average of 41.47 

t.ha
-1

 of biomass, and 2020 recorded 81.66 t.ha
-1

. In this sense, we observed a 

total increase of 96.92% between 2016 and 2020. Through biomass estimates it 

was possible to observe that secondary forests are a potentially significant 

biomass sink due to the rapid accumulation rates of this component. Therefore, 

biomass stocks were increased over the years of this study, demonstrating the 

capacity for biomass growth in forests undergoing restoration. 

Keywords: Allometric equations; Forest recovery; Amazon biome; 

Temporal analysis; Tropical Rainforest. 
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INTRODUCTION 

Human expansion in the Amazon biome has converted large areas of 

climax-stage tropical forest into landscapes consisting primarily of pasture, 

agriculture, and secondary forest mosaics. This type of forest is defined as those 

formed because of the human impact on areas with forest cover. According to 

Poorter et al. (2016) and Wang et al. (2020b), secondary forests comprise 

approximately 21 % of the previously deforested areas in the Brazilian Amazon. 

In general, secondary forests are characterized by fast-growing species (pioneers) 

and are good alternatives to reduce net carbon emissions, mitigating climate 

change (Chazdon et al. 2016). 

In recent years, new forms of forest and ecological restoration that offer 

ways of converting degraded tropical forests have been tested. These restoration 

techniques include improvements in secondary forests management, reforestation, 

and enrichment planting as more complex reforestation where forest cover has 

been lost (Matos et al. 2019; Barros et al. 2020). While forest loss continues in 

Brazil at variable rates, techniques are implemented to develop secondary forests 

where primary forests have been completely removed by human processes. 

The extent and age of Amazonian secondary forests have already been 

quantified, and their spatiotemporal patterns are highly dynamic (Wang et al. 

2020a; Nunes et al. 2020). In this context, these forests are a crucial component in 

the Brazilian Amazon, as their cover restores the structure and nutrient cycling in 

the soil. Despite the importance of these forests for conservation planning, 

environmental policy, and management of forest areas in the Brazilian Amazon, 

they have been less studied compared to primary tropical forests (Barlow et al. 

2007; Carvalho et al. 2019; Teixeira-Santos et al. 2020). 

Understanding biomass stocks in secondary forests is essential for forest 

management and restoration; therefore, biomass estimates are highly sensitive to 

choosing a particular allometric equation (Chave et al. 2005; Van Breugel et al. 

2011). Although local allometric models generally perform well for a particular 

location or forest type, they are inaccurate in biomass estimates when applied to 

other sites and different forest types (Chave et al. 2005; Sanquetta et al. 2014b, a; 

Feng et al. 2017; Corte et al. 2020; Tejada et al. 2020). 

Estimating biomass at different scales mainly depends on equations or 

remote sensing techniques for prediction and analysis at regional and national 

scale mapping (Mohd Zaki and Abd Latif 2017; Mitchell et al. 2017; Tripathi et 

al. 2018). These equations are statistical models used to predict biomass based on 

tree measurement characteristics measured during forest inventory processes. 

Biomass estimation is particularly challenging in tropical forests due to 

difficulties with collecting field data in these ecosystems, characterized by a high 

heterogeneity of individuals, tree measurement variables, vertical structure, and 

horizontal distribution. 

Allometric equations are important for their application in forest biomass 

and carbon assessments both locally and nationally. Generalized pan-tropical 

models of biomass estimation equations have been developed by several 
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researchers (Kenzo et al. 2020; Virgulino-Júnior et al. 2020; Romero et al. 2020; 

Zhou et al. 2021; Latifah et al. 2021; Saha et al. 2021). The adjustments to these 

equations were obtained by measuring multiple tree species and several distinct 

locations and are intended to be applied to a wide variety of tropical forests. 

However, a large error is observed when estimates are generated by adopting 

generic pan-tropical allometric equations for specific forest types (Ngomanda et 

al. 2014; Vinh et al. 2019). 

With limited research on secondary forests and their biomass stocks, it is 

possible that these stocks are quantified through allometric equations arising from 

measurements and field observations and that this prediction can be used for the 

temporal analysis of these stocks in forest environments. In this sense, this work 

aimed to adjust predictive models of biomass concerning the height and diameter 

of trees, analyzing temporally and quantitatively the biomass stocks in areas of 

secondary vegetation located in Rondônia, Western Amazon, aiming at 

quantification of aerial biomass in these ecosystems and discuss the implication 

of abundance of individuals in the estimates.  

 

MATERIAL AND METHODS 
This study was carried out in a region of the Amazon rainforest located in 

the state of Rondônia, Brazil, between the meridians 62º44'05" and 63º16'54" and 

parallels 9º00'00" and 9º30'00" of south latitude, as shown in Figure 1. The areas 

refer to forest restoration plantations, containing 20 plots with 200 m² (20 x 10 m) 

monitored annually to assess the growth of trees, natural regeneration of new 

species, and biomass stock monitoring (Figure 1). 

 

 
Figure 1. Location of the study area and experimental plots. 

 

All trees in the plots with a circumference at breast height (CBH) above 

15 cm were identified to measure their CBH and total height (ht), the 

circumferences were measured using tape measures and total heights were 
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measured with telescopic rods. The species that could not be identified in the 

field had some branches collected and, when possible, also the reproductive 

structures. Exsiccates were made, identified, herborized, and registered at the 

Federal University of Rondônia (UNIR), with the support of the Museu Paraense 

Emilio Goeldi de Botânica. 

 

Acquisition of forest biomass 

After the forest inventory, the species with the greatest phytosociological 

importance were listed to determine the biomass by the destructive method. On 

the other hand, the diametric distribution was used to select individuals to be 

slaughtered and measured; that is, the average diameter at breast height (DBH) of 

the plot was represented by a single individual that had approximately that 

diameter. 

To determine the biomass, 30 trees were felled and sectioned into bole, 

branches, foliage, and miscellaneous (fruits, flowers, shoots, among others). The 

root system was exposed until 50 cm depth; all exposed parts were collected and 

cleaned. The fractions collected from the trees were weighed separately using a 

digital scale with a precision of 100g, obtaining the fresh weight of each 

compartment. Approximately 500g biomass was taken from each fraction of fresh 

samples and placed in single packages to be taken to the laboratory. These 

samples were dried in a forced circulation oven at 65 ºC until reaching constant 

weight. Then, the conversion into dry biomass of each compartment was 

performed according to Equation 1. 

100

)u-(100
bf=bs

x
xx                 eq. 1 

Where: 

bsx = tree dry biomass of fraction x (kg); 

bfx = tree fresh biomass of fraction x (kg); and 

ux = tree moisture content of fraction x (%). 

 

To obtain the total biomass of each tree, the sum of each biomass fraction was 

performed according to Equation 2. 

 

   eq. 2 

Where: 

W = total biomass (kg); 

ba = tree aboveground dry biomass (kg); 

bf = tree bole dry biomass (kg); 

br = tree root dry biomass (kg). 

 

Adjusting the equations 

The data obtained in the field - ht, Biomass (W), and CBH (later 

converted to DBH - diameter at breast height) - were used to adjust equations to 
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estimate tree individual biomass. The R software version 4.04 (R team, 2021) was 

used to adjust the equations with the olsrr package from which by inserting the 

variables (dependent and independent), it is possible to obtain all combinations 

between the independent variables. In addition to linear equations, we also 

analyzed non-linear, exponential, logarithmic, and polynomial models, as shown 

in Table 1. 

 

Table 1. Generic equations used in adjustments 

Generic equations 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

For all models tested in this study, biomass (kg) was used as dependent 

variable (y), and DBH and ht as independent variables. The Kolmogorov-

Smirnov normality test was used to check the residuals normality of the 

dependent variable with the independent. The Bartlett variance homogeneity test 

was used to compare the variance of two or more samples to decide whether they 

are taken from populations with equal variance. 

The selection of the model that best suited our data was performed using 

adjustment metrics: sum of squared estimate of errors (SSE), r² (determination 

coefficient), adjusted r² (adjusted determination coefficient), RMSE (root mean 

squared error), Bias, x² (chi-square), Syx% (standard error of the estimated 

percentage) and Syx (estimated standard error). The Meyer Correction Factor was 

used to correct the logarithmic discrepancy in models in which the dependent 

variable was submitted to logarithmic transformation 

Model validation was performed using the K-fold technique with 

separation of 10 subsets (k = 10); this cross-validation method involves dividing 

the dataset into k-subsets. Each subset is maintained while the model is trained on 

all other subsets; the fitted model is then used to test the subset that was not used. 

The models that obtained the best statistical metrics were submitted to visual 
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analysis of their fit lines (Observed data versus Adjusted data) and analysis of 

standardized residuals. 

 

RESULTS  

Table 2 shows the characteristics of the 30 trees cut in sections and 

measured. These individuals represented 22 species and 11 families (Table 2). 

Diameters ranged from 5.41 to 13.06 cm, with a mean of 9.47 cm and a standard 

deviation of 2.57 cm. Heights ranged from 5.23 to 11.80 m, with a mean of 8.18 

m and a standard deviation of 1.75 m. 

 

Table 2. Species collected and descriptive statistics of diameters and heights of 

felled trees for biomass calculation. 
Family Epithet DBH (cm) ht (m) 

Anacardiaceae Anacardium sp. 9.87 8.90 

Bignoniaceae 

Handroanthus sp. 12.10 8.00 

Handroanthus sp. 12.29 8.46 

Handroanthus serratifolius L. 10.83 7.02 

Bixaceae Bixa orellana L. 7.17 7.00 

Boraginaceae Cordia alliodora (Ruiz & Pav.) Cham. 12.19 10.97 

Euphorbiaceae Hevea brasiliensis L. 8.12 9.35 

Fabaceae 

Stryphnodendron sp. 10.50 8.80 

Hymenolobium pulcherrimum Ducke 6.05 6.15 

Inga cylindrica (Vell.) Mart. 10.98 8.60 

Enterolobium sp. 5.89 5.80 

Schizolobium amazonicum Huber ex Ducke. 12.73 10.80 

Parkia multijuga Benth. 11.94 7.70 

Hymenaea courbaril L. 13.05 9.80 

Enterolobium schomburgkii (Benth.) Benth. 5.73 6.30 

Schizolobium amazonicum Huber ex Ducke. 7.42 7.35 

Hymenaea courbaril L. 5.44 5.23 

Apuleia leiocarpa (Vogel) J. F. Macbr. 9.90 9.50 

Dipteryx odorata (Aubl.) Willd. 7.48 6.55 

Enterolobium schomburgkii (Benth.) Benth. 9.24 9.90 

Dipteryx odorata (Aubl.) Willd. 7.32 11.00 

Enterolobium schomburgkii (Benth.) Benth. 9.39 8.60 

Acacia mangium Wild. 13.06 9.20 

Parkia multijuga Benth. 7.64 6.95 

Hypericaceae Vismia guianensis (Aubl.) Choisy 5.41 7.00 

Malvaceae Ceiba pentandra (L.) Gaertn. 10.66 6.25 

Melastomataceae Bellucia grossularioides (L.) Triana 8.92 6.40 

Meliaceae 
Cedrela odorata L. 7.51 6.65 

Cedrela odorata L. 13.06 9.50 

Descriptive statistics DBH (cm) ht (m) 

 Average 9.47 8.18 

 Standard error 0.47 0.32 

 Median 9.63 8.23 

 Standard deviation 2.57 1.75 

 Sample variance 6.61 3.07 

 Minimum 5.41 5.23 

 Maximum 13.06 11.80 
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Figure 2 shows the diametric distributions for 2016 and 2020. In the first 

year of monitoring, there were more trees with smaller diameters than those 

measured in 2020, when fewer individuals with larger diameters were measured. 

In this sense, this image shows that the years of monitoring have seen a mortality 

of trees and a development of the remaining trees. The blue column shows the 

individuals measured in 2016 and the yellow column shows the individuals in 

2020, it can be seen that there is a higher frequency of trees in 2016 compared to 

2020. 

 

 
Figure 2. Diametric distributions of trees in 2016 and 2020. 

 

Adjusted equations 

The Kolmogorov-Smirnov test showed that the residuals are normal (ρ = 

0.2514). Thus, it was possible to adjust the models without transforming the 

variables. We also obtained the homogeneity of the variance through the Bartlett 

test (ρ = 0.4304). 

Figure 3 demonstrates the comparison of observed and adjusted data from 

the five best models. It presented similar behaviors to the adjustment, with an 

overestimation when the biomass exceeds 35 kg. The residuals demonstrate that 

this overestimate can reach up to 25 kg more than the observed biomass and, with 

values less than 35 kg, there is an underestimate varying up to 25 kg less. 
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Figure 3. Comparison of the five best models against observed and adjusted data. 

 
Table 3 shows the five best fits for predicting biomass using the DBH and 

total height variables. Model 1 presented the best values concerning comparative 

statistics. Later, this model was used to calculate the biomass for all trees 

measured in the plots for each year. 

The residuals shown in Figure 4 demonstrate that the error variances are 

constant (homoscedastic) and that the independent variables (DBH and ht) have a 

linear relationship with the dependent variable (w). We observed that the 

standardized residuals were randomly dispersed around zero, with constant 

variance, concentrated between -1 and 1. 
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Figure 4. Graphical distribution of total biomass standardized residuals for the 

five best-fitted models, the y axis indicates the standardized residuals, while the x 

indicates the total observations. 

 
Table 3. Five best equations obtained through adjustments, according to 

statistical criteria. 

 Models SSE r2 
r2

aj

us 
Bias 

RMS
E 

Syx 
(kg) 

Syx
% 

x² 

1 

 

7416.
86 

0.5
5 

0.5
7 

-
9.28x
10-15 

247.
22 

15.
72 

49.
30 

201.
16 

2 
 

7745.
75 

0.5
4 

0.5
5 

5.58x
10-16 

258.
19 

16.
06 

50.
38 

204.
84 

3 

 

8836.
56 

0.4
7 

0.4
9 

5.57x
10-16 

294.
55 

17.
16 

53.
81 

218.
31 

4 

 

8868.
51 

0.4
7 

0.4
9 

-
2.04x
10-15 

295.
61 

17.
19 

53.
91 

218.
61 

5 

 

8889.
78 

0.4
7 

0.4
9 

-
1.85x
10-15 

296.
32 

17.
21 

53.
97 

214.
07 

Where: SQE = Error sum of squares, r² = Determination coefficient, r²ajus = Adjusted 
determination coefficient, RMSE = Root mean squared error, x² = chi-square, Syx = 
Estimated standard error, and Syx% = Standard error of the estimated percentage. 

 

 



Moura et al. 

 
16 

Estimated biomass 

Figure 5 demonstrates the application of the adjusted model to all trees 

measured in the plots concerning diameter and height. There is a higher 

concentration of trees in the classes up to 20 cm in diameter with biomass up to 

200 kg; However, from the class with 20 cm, there is a smaller number of 

individuals with biomass above 200 kg per tree (Figure 5A). Regarding heights, 

there is a concentration of trees above 5 m and smaller than 15 m. 

 
 

  

Figure 5. Biomass distribution concerning diameter and height class range. 

 

Biomass stock in the plots 

The prediction of biomass showed that, except for Plots 6, 7, 18, and 19, it 

was affected by an increasing trend in biomass stock between the years 2016 to 

2020; However, in four plots (1, 2, 17, and 18) it was not possible to obtain data 

for all years of the inventory. The following growth percentages were observed 

between the years under study: Plot 3 (93.42 %), Plot 4 (30.39 %), Plot 5 (89.69 

%), Plot 6 (25.96 %), Plot 7 (115.23 %), Plot 8 (73.39 %), Plot 9 (66.09 %), Plot 

10 (94.32 %), Plot 11 (175.54 %), Plot 12 (123.87 %), Plot 13 (65.59 %), Plot 14 

(141.46 %), Plot 15 (137.28 %), Plot 16 (113.84 %), Plot 18 (117.55 %), and Plot 

19 (90.74 %) (Figure 6). 

In 2016, the largest stock of biomass among the inventoried plots was in 

Plot 18 (55.42 t.ha
-1

) and the smallest in Plot 14 (15.86 t.ha
 -1

), while in 2020, Plot 

11 presented the largest stock (135.23 t.ha
 -1

), and the lowest value was 30.91 t.ha
 

-1
 (Plot 6). It is observed that Plots 6, 15, 18, and 19 showed a reduction in their 

stock between 2019 and 2020 (-4.99, -2.25, -6.25, and -18.31 t.ha
 -1

, respectively). 

Regarding the abundance of individuals per hectare, it was possible to 

observe that Plots 3, 12, 13, 16, and 19 were not affected by a reduction in 

individuals in 2019, while in the other Plots there was a decrease in the number of 

trees. The average number of trees in the plots was: 2016 (1,198 trees.ha
-1

), 2018 
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(1,466 trees.ha
-1

), 2019 (1,118 trees/ha), 2020 (1,468 trees.ha
-1

). It is observed 

that Plot 8 has the greatest abundance (2,200 trees.ha
-1

), while Plot 16 had only 

738 trees.ha
-1

. 

 

 
Figure 6. Biomass stock from plots inventoried in the years 2016 to 2020. 

 

Figure 7 demonstrates the distribution of biomass stock in the plots 

concerning the years that the inventories took place. In 2016, the plots had an 

average of 41.47 t.ha
-1

 and a deviation of 12.29 t.ha
-1

. 2018 presented a total of 

57.02 t.ha
-1

 and 19.20 t.ha
-1

 deviation. 2019 presented an average 71.64 t.ha
-1

 and 

24.77 t.ha
-1

 deviation. However, 2020 recorded an average of 81.66 t.ha
-1

 and 

28.99 t.ha
-1

 deviation. In this sense, a total increase of 37.50% between 2016 and 

2018 was observed, 25.64% from 2018 to 2019 and 13.99% from 2019 to 2020, 

therefore a total increase from 2016 to 2020 of 96.92% was observed. 
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Figure 7. Total biomass stock of plots inventoried in the years 2016 to 2020. 

 

DISCUSSION 

The allocation and determination of biomass will play an important role 

based on previously degraded forests that have undergone restoration/recovery 

processes. In this context, the adjusted models predicting biomass from DBH and 

ht demonstrate that there is a low correlation between the dependent and 

independent variables. The adjusted correlation coefficients ranged from 0.49 to 

0.57, which can be explained by the diversity of species sampled, increasing the 

variability of measured biomass, diameters, and heights among the sampled trees. 

By analyzing Model 1, chosen among the five best ones, it was possible 

to observe that biomass prediction with this model was satisfactory because it 

presented values consistent with the area and with the values obtained in the field. 

However, Romero et al. (2020) observed superior statistical metrics when 

estimating the biomass of trees harvested in southWestern Amazonia and 

reported that the quality of the adjustments was characterized by the expressive 

quantity of samples collected (223 individuals). Karyati et al. (2019), observing 

secondary forests, showed similar results to this study and concluded that the 
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heterogeneity of secondary forests significantly reduces the relationships between 

diameters, heights, and biomass. 

In this sense, several factors influence the development of tree species in 

secondary forests; thus, characteristics such as canopy architecture, local 

productive capacity, and competition for light may be related to the low statistical 

values observed for the estimates made in this study. In addition to these factors, 

in native forests, forests undergoing restoration, and in mixed plantations, greater 

heterogeneity in tree development is to be expected, caused by the existence of 

interspecific competition, which contributes to obtaining standard error values for 

the highest estimate (Sanquetta et al. 2017; Lima et al. 2021). 

The reduction observed in biomass stock in plots 6, 7, 18, and 19 is 

explained by the mortality of trees and illegal logging, which were responsible for 

the reduction of biomass in those plots, reducing trees density and consequently 

the total stock values. In particular, plots 18 and 19, which are on the transition 

with soybean crops, were affected by partial removal of forest vegetation for 

soybean implantation. 

The results obtained in this study were consistent with those observed in 

Yang et al. (2020), where the authors estimated the aboveground biomass using 

remote sensing techniques for areas undergoing restoration with ages ranging 

from 1 to 8 years and biomass ranging from 20 to 70 Mg.ha
-1

. Cassol et al. (2019) 

observed that areas in the Amazon undergoing a 10-year restoration process have 

less than 100 Mg/ha, with data obtained through Alos/Palsar-2. The difficulty in 

obtaining biomass in the field is a determining factor for this variable acquisition 

through remote sensors. 

Studies show that the greater density of individuals in an area, the greater 

production of biomass per unit area; that is, the spacings between the denser 

individuals provide higher amounts of biomass than the smaller ones (Pereira 

2013; Eloy et al. 2016; Favero et al. 2020; Castanho et al. 2020; Shen et al. 2020; 

Næsset et al. 2020). It was possible to observe in this study that Plots with lower 

abundances per hectare may also have biomass stocks equivalent to Plots with 

greater abundance as the size (height and DBH) of individuals directly influenced 

the mean value of biomass. In 2020, Plots 6 and 16 had an equal number of trees 

per hectare (1,300 trees.ha
-1

) but biomass was respectively 30.91 and 82.09 t.ha
-1

. 

It links to the average diameters and heights of trees in the plots, which was 

higher for Plot 15 with an average DBH of 15.6 cm and an average height of 9.4 

m, while in Plot 6 averages were 12.8 cm and 7.4 m. 

The information presented regarding secondary forests is essential for the 

monitoring and management of these areas because it subsidizes policies and 

proposals for environmental management in the Amazon. These forests are a 

possible solution for carbon absorption and climate change control, besides 

conserving biodiversity. Therefore, the reduction of deforestation, agriculture, 

and cattle raising allied to the maintenance of forest areas are vital to mitigate the 

impacts caused by climate change. 
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CONCLUSIONS 

The adjusted models using diameter at breast height (DBH) and total 

height (ht) as independent variables present satisfactory statistics and can be used 

to estimate tree biomass with precision.  

The results demonstrate that few trees with large dimensions are 

responsible for biomass stock in areas under restoration, while the abundance of 

individuals per hectare influences biomass stock. However, the main factor in 

these stocks were heights and diameters; in this sense, the larger the trees, the 

greater biomass stocks. 

Through the biomass estimates, it was possible to observe that secondary 

forests are a potentially significant biomass sink due to the rapid accumulation 

rates of this component. Therefore, biomass stocks were increased over the years 

of study, demonstrating the capacity for biomass growth in forests undergoing 

restoration. However, frequent disturbances interrupt the recovery process and 

consequently the establishment of mature forests. 

The value of secondary forests as a biomass stock needs to be determined 

within a context of dynamic land use, assessing stocks in primary forests 

concerning secondary forests and areas with other land uses. 
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